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Abstract Spanwise surface heterogeneity beneath high-Reynolds number, fully-rough

wall turbulence is known to induce a mean secondary flow in the form of counter-rotating

streamwise vortices—this arrangement is prevalent, for example, in open-channel flows

relevant to hydraulic engineering. These counter-rotating vortices flank regions of pre-

dominant excess(deficit) in mean streamwise velocity and downwelling(upwelling) in

mean vertical velocity. The secondary flows have been definitively attributed to the lower

surface conditions, and are now known to be a manifestation of Prandtl’s secondary flow of

the second kind—driven and sustained by spatial heterogeneity of components of the

turbulent (Reynolds averaged) stress tensor (Anderson et al. J Fluid Mech 768:316–347,

2015). The spacing between adjacent surface heterogeneities serves as a control on the

spatial extent of the counter-rotating cells, while their intensity is controlled by the

spanwise gradient in imposed drag (where larger gradients associated with more dramatic

transitions in roughness induce stronger cells). In this work, we have performed an order of

magnitude analysis of the mean (Reynolds averaged) transport equation for streamwise

vorticity, which has revealed the scaling dependence of streamwise circulation intensity

upon characteristics of the problem. The scaling arguments are supported by a recent

numerical parametric study on the effect of spacing. Then, we demonstrate that mean

streamwise velocity can be predicted a priori via a similarity solution to the mean

streamwise vorticity transport equation. A vortex forcing term has been used to represent

the effects of spanwise topographic heterogeneity within the flow. Efficacy of the vortex

forcing term was established with a series of large-eddy simulation cases wherein vortex

forcing model parameters were altered to capture different values of spanwise spacing, all

of which demonstrate that the model can impose the effects of spanwise topographic

heterogeneity (absent the need to actually model roughness elements); these results also

justify use of the vortex forcing model in the similarity solution.
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1 Introduction

Inertia-dominated, rough-wall turbulence is the norm in many engineering and geophysical

flows of practical importance [1–3]. Under such conditions, the spatial distribution of

momentum-absorbing elements results in elevated turbulence production, which enhances

the cumulative aero-/hydro-dynamic signature of the surface (i.e., the shear velocity, us).

This process is mechanistically driven by flow separation from individual elements, and is

thus confined to the layer of fluid immediately above the surface—the roughness sublayer

[4]. The roughness sublayer thickness scales linearly with aggregate element height.

Turbulence within the roughness sublayer is structurally autonomous to the above inertial

layer, with the flow exhibiting scaling that indicates greater resemblance to a mixing layer

[5–7] (dynamic autonomy is another matter, with recent findings suggesting that the

roughness sublayer is subjected to an amplitude modulation via dynamics of the inertial

layer [8–10]).

When the aggregate element height is sufficiently ‘‘small’’, and the spatial distribution

of elements is relatively homogeneous, outer-layer similarity is valid [11] and the struc-

tural nature of the turbulence is equivalent to a smooth wall [12–15]. However, we stress

recent results from Hong et al. [16], who showed that outer-layer perturbations can be

detected in the power spectral density of streamwise velocity fluctuations, with a series of

clear spectral peaks evident at wavelengths corresponding precisely with characteristic

scales of the underlying topography; their data was attained via experimental measurement

of turbulent flow over a topography that thoroughly conforms to all antecedent require-

ments for presumption of outer-layer similarity. The specific definition of ‘‘small’’ is itself

the topic of ongoing research, although H=h[ 30 is a widely-cited condition for outer-

layer similarity [2, 14], where H and h represent the flow depth and aggregate element

height, respectively. For H=h\30, the outer layer is perturbed by shear layers and wakes

originating within the roughness sublayer. Similarly, the specific conditions for surface

spatial homogeneity is itself an open problem [17, 18], with the planform area index, kp,
commonly used to define ‘‘sparseness’’ [19].

Streamwise and spanwise surface heterogeneities are relevant to the present discussion

(herein, we adopt the nomenclature, x ¼ x1 îþ x2 ĵþ x3k̂, where the first, second, and third

component of any vector represents its streamwise, spanwise, and wall-normal value,

respectively). Turbulent wall flows respond to the former with elevated turbulence pro-

duction in the fluid proximal to the heterogeneity and the formation of an internal layer—

the internal boundary layer (IBL)—which grows in thickness in the downflow direction

[20–23]. The IBL has received substantial attention from the community, where some have

developed prognostic schemes for thickness of the internal layer based on the magnitude of

surface change [17]. The latter—spanwise surface heterogeneity—has received far less

attention. Recently, however, there has been growing interest in this problem and its affect

on dynamics of the above turbulent flow [24–34].

The topic of surface heterogeneities is relevant to a variety of high Reynolds number

environmental flows. For example, efforts to characterize atmopheric boundary layer flows

over heterogeneous landscapes [35]. In addition, there remains substantial interest in open-

channel hydraulic flows and the emergent secondary flow patterns when the lower surface

exhibits spanwise heterogeneities [24, 26, 36]. It is now well understood that spanwise

surface heterogeneity alters the structure of the above flow due to a spanwise variation in

imposed surface stress. This variation in imposed surface stress is responsible for altering
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the spatial distribution of turbulent stresses in the spanwise–wall-normal plane. These

flows exhibit a prominent downwelling and upwelling above the high and low roughness,

respectively, and these locations have been named high- and low-momentum pathways

(HMP, LMP), respectively [25, 29]. Anderson et al. [31] demonstrated that the flows were

a manifestation of Prandtl’s secondary flow of the second kind [37], in accordance with

aforementioned contributions from the river hydraulics community. This was accom-

plished by leveraging techniques commonly used by those studying secondary flows in

turbulent duct flows [37–43]. And while preceding studies have confirmed that mean

secondary flows in channels and boundary layers are a manifestation of Prandtl’s sec-

ondary flow of the second kind [37, 42], open questions on the intensity of secondary flows

with spacing remain [32], and development of prognostic tools for such flows is of interest.

Vanderwel and Ganapathisubramani [30] have recently shown that spacing between

adjacent heterogeneities serves as a control on the depth of the resulting mean circulations.

Yang and Anderson [32] performed a comprehensive parametric study on the influence of

spacing, s2=H, and element height, h / H. They argued that when H=hJ20, spacing is

itself a flow parameter. When s2=HJ2, two circular counter-rotating cells can freely

occupy the domain, and the surface has the aero-/hydro-dynamic signature of a topogra-

phy. For s2=H.2, secondary cells can not occupy the domain since they are attenuated by

adjacent rolls [30], and the surface has the aero-/hydro-dynamic signature of a roughness.

1.1 Present study

The authors have studied the Reynolds-averaged momentum and streamwise vorticity

transport equation to explain some of the phenomena observed in these flows when per-

turbed by spanwise surface heterogeneity. In Sect. 2, the transport equations and a scaling

analysis of the Reynolds-averaged streamwise vorticity transport equation has been used to

explain the trends observed in the intensity of counter-rotating secondary flows with

varying spanwise spacing (this component of the research leverages results presented in the

recent article, Yang and Anderson [32]). With this, in Sect. 3 we recast the Reynolds-

averaged streamwise vorticity transport equation as an ordinary differential equation

(ODE) via introduction of a similarity variable; this similarity solution allows a priori

computation of the mean streamwise velocity distribution due to a pre-defined model for

the counter-rotating cells. The similarity solution is tested with a series of test cases

(Sect. 4), with results shown in Sect. 5. Section 6 shows results from complementary

large-eddy simulation (LES) of flow over a homogeneous roughness, but with an additional

body force that parametrizes spanwise topographic heterogeneity effects (this section is

largely intended to demonstrate efficacy of key aspects of the developments in Sects. 2 and

3). The results are consistent with all preceding observations on the spatial nature and

intensity of these flows, and thus justify the vortex forcing approach and the theoretical

deductions. We expect that prognostic description of Reynolds-averaged flows perturbed

by such spanwise heterogeneous conditions will have implications for hydraulic design

applications, for example. The results could also prove useful for initializing high-reso-

lution numerical simulations as a means to define the Reynolds-averaged flow a priori.

Concluding remarks are provided in Sect. 7. The developments in Sects. 2 and 3 are

predicated upon three enabling conditions:

1. The secondary flow is sustained via a vortex body force, fx. The vortex forcing model

is inspired by efforts to model Langmuir turbulence in the ocean mixed layer with the

Craik-Leibovich transport equations [44–50] and introduction of the Stokes drift
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profile [51]. As comprehensively outlined below, we adopt a spanwise-variable

version of this model, where the model is tuned to align with the presence of

downwelling and upwelling and, thus, impart the same affects as a spanwise variation

in surface stress.

2. The similarity solution makes use of a streamfunction, wðx2; x3Þ, to represent the

counter-rotating streamwise cells flanking regions of streamwise momentum excess/

deficit. We make use of a candidate streamfunction in order to demonstrate efficacy of

the formalism, although other models could certainly be used without loss of

generality.

3. As will be shown, a turbulent viscosity is required to capture the influence of turbulent

stress heterogeneity upon evolution of vorticity (referred to hereafter as turbulent

torque, and studied in Mansfield et al. [52, 53]). For the present purposes, we will

assume that the turbulent viscosity can be set equivalent to the product of flow depth

and shear velocity, although one could further generalize the procedure for alternative,

more sophisticated models. Such generalizations would not result in changes to the

similarity solution.

We varied parameters of the model to replicate different forcing conditions, which

demonstrated how the intensity of the counter-rotating cells and the prominence of the

HMPs and LMPs varies. We note some conceptual similarities between the present work

and the contributions from McKeon et al., who presented models for the elongated

structures in turbulent Couette flow (see, for example, Gayme et al. [54]). However, the

present work is distinctly different as the results are derived from consideration of the

Reynolds-averaged streamwise vorticity transport equation, and because here we have used

a similarity solution as a prognostic tool to quantify the resultant mean flow in response to

spanwise topographic heterogeneity. For completeness, we also point out that for transi-

tional boundary layers, Townsend [11] developed a prognostic tool for the onset of per-

sistent rolls originating from lateral stress variations. This prognostic tool was derived from

the Reynolds-averaged vorticity transport equation—the equation underpinning this

work—but was used for an entirely different purpose (here, spanwise surface-stress vari-

ation is imposed via a proxy model for topographic heterogeneity, and we are concerned

with inertial-dominated flows).

2 Vorticity dynamics

We will consider the Reynolds-averaged transport equations for momentum, qhuit, and
vorticity, hxit, where both vectors are presumed solenoidal in the present development, i.e.

r � huit ¼ r � hxit ¼ 0, and where a Reynolds-averaged quantity is denoted by h. . .it. We

introduce a model to parametrize the role of spanwise topographic heterogeneity (model

efficacy is demonstrated in Sect. 6). We go on to perform an order of magnitude analysis of

the Reynolds-averaged vorticity transport equation with characteristic scales relevant to the

‘‘roughness’’ or ‘‘topography’’ regime, as highlighted in Yang and Anderson [32]. The

majority of this development is devoted to a channel (internal) flow, although there is no

evidence to suggest that the approach would not be valid for a boundary layer if the

streamwise heterogeneity can be compensated for (or simply neglected, as has been done

with success in preceding studies such as Willingham et al. [27] and Anderson et al. [31],

who have argued that the effect of streamwise heterogeneity is small compared with other

influences). The approach is applied for x 2 X, with boundary conditions outlined below.
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2.1 Transport equations with vortex forcing

Consider the forced Reynolds-averaged momentum transport equation:

Dhuit
Dt

¼ � 1

q
rp�r � hTit � e1Pþ hfxit; ð1Þ

where hTit ¼ hu0 � u0it is the Reynolds (total) turbulent stress tensor, u0 ¼ u� hu0it, and
P ¼ �qu2sH

�1 is an imposed pressure gradient, where us is imposed shear velocity, q is

fluid density, and H is flow depth. The final term on the right-hand side of Eq 1 is a body

force, computed here via introduction of an x2-x3 dependent forcing velocity, vis:

hfxit ¼ hxit � us; ð2Þ

where hxit ¼ r� huit is Reynolds-averaged vorticity and us is a forcing velocity used to

impose the effects of spanwise variable surface stress,

us ¼
(
Us exp � x22

a1H2

� �
� exp �fx2 � kg2

a1H2

" # !
exp � x23

a2H2

� �
; 0; 0

)
; ð3Þ

where Us is a magnitude. This vortex forcing model is inspired by efforts to model

Langmuir turbulence in the ocean upper-mixed layer via the Craik-Leibovich equations

[46–48]. Unlike the traditional applications to modeling Langmuir turbulence, however,

the transport equations are not subjected to wave averaging in order to capture the

aggregate effects associated with wave orbital dynamics. The us exhibits an exponential

decline in the wall-normal (x3) direction, which ensures that the input vortex forcing

effects are more pronounced near the wall and gradually approach channel-like conditions

in the outer (consistent with preexisting knowledge on low- and high-momentum path-

ways). The more radical condition is introduction of the spanwise (x2) dependence, which

is altered via a tuning parameter, a1. The spanwise dependence is necessary to capture

spanwise variability in drag and momentum that is the signature of low- and high-mo-

mentum pathways [31]. The model used here was designed in coordination with the vortex

forcing model, where expansion of Eq. 2 provides guidance on the model configuration (as

will be shown later, this forcing arrangement yields qualitatively-similar results when

implemented during complementary large-eddy simulation. Equation 3 provides a means

to spatially fix the position of rotating cells. Note that the spanwise surface heterogeneity

due to rows of obstacles could also be represented via, for example, an immersed-boundary

method wherein the Eq. 1 body force is, f � u:uð Þh�1, and where h is the element height.

But, this approach requires an immersed-boundary method, as opposed to the relative

simplicity offered by Eq. 2.

The Reynolds-averaged vorticity transport equation is attained by evaluating the curl of

Eq. 1, yielding:

Dhxit
Dt

¼ hxit � rhuit �r� r � hTitð Þ þ r � hfxit; ð4Þ

where the pressure gradient, rp, and pressure gradient forcing, e1P, vanish through the

curl operation since they are both spatially uniform. The first, second, and third right-hand

side terms are vortex stretching and tilting, turbulent torque, and vortex forcing, respec-

tively. Note that Prandtl’s secondary flows of the first and second kind are driven by the

first and second right-hand side terms, respectively [42].
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Here, we are interested only in the streamwise (x1) component of Eq. 4:

Dhx1it
Dt

¼ hxiitoihu1it � �1qioqojhTjiit þ �1jkojhfxk it: ð5Þ

For applications to turbulent channel and pipe flows with spanwise surface heterogeneity

(owing to topographic forcing) but streamwise homogeneity, all streamwise derivatives

vanish [27, 31]. With this condition, we immediately deduce that the stretching and tilting

term, hxiitoihu1it ¼ hx1ito1hu1it þ hx2ito2hu1it þ hx3ito3hu1itg, vanishes upon substitu-

tion of the vorticity components, hxit ¼ fo2hu3it � o3hu2it; o3hu1it � o1hu3it;
o1hu2it � o2hu1itg. The final right-hand side term,

�1jkojhfxk it ¼ �1jkoj�kpqhxpitusq ¼ d1pdjqojhxpitusq � d1qdjpojhxpitusq
¼ ojhx1itusj � ojhxjitus1;

ð6Þ

simplifies greatly upon application of o1ðÞ ¼ 0, resulting finally in:

�1jkojhfxk it ¼ o2hu1itð Þ o3u
s
1

� �
� o3hu1itð Þ o2u

s
1

� �
; ð7Þ

where us is a pre-defined vortex forcing model input argument, defined here with the Eq. 3

model. The second right-hand side term, herein called turbulent torque, can be expressed in

two ways [52, 53]. Firstly, after substitution of the components of hTit:

�1qioqojhTjiit ¼ o22 � o23
� �

hT23it þ o23 hT33it � hT22itð Þ: ð8Þ

However, for the present purposes wherein we are concerned with the scale of right-hand

side terms appearing in Eq. 5, it is more convenient to introduce the Boussinesq model

[55]:

T ¼ �2mt S� 2

3
r � huitd

� �
þ 2

3
dk; ð9Þ

where mt is a turbulent (eddy) viscosity, S ¼ 1
2

rhuit þrhuiTt
� 	

is the strain-rate tensor

and k ¼ 1
2
hu0it:hu0it is turbulent kinetic energy. For the present solenoidal flow,

r � huit ¼ 0, and Eq. 9 reduces to T ¼ �2mtSþ 2
3
dk, and substitution into Eq. 8 yields the

somewhat simplified expression for turbulent torque (with the caveat that mt must be

defined a priori):

�1qioqojTji ¼ � 1

2
mt o

2
3hx1it þ o22hx1it

� �
: ð10Þ

Substitution of the Eqs. 7 and 10 relations into Eq. 5 yields:

hu2ito2hx1it þ hu3ito3hx1it

¼ 1

2
mt o23hx1it þ o22hx1it
� �

þ o2hu1itð Þ o3u
s
1

� �
� o3hu1itð Þ o2u

s
1

� �
:

ð11Þ

Note that, as one would anticipate, the curl of the vortex forcing term (Eq. 2) enters only

on the right-hand side of the equation governing transport of hx1it, i.e.,
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huit � rhx2it ¼ hxit � rhu2it þ mtr2hx2it; ð12Þ

and,

huit � rhx3it ¼ hxit � rhu3it þ mtr2hx3it: ð13Þ

2.2 Scaling arguments

A preceding study [32] has shown how the intensity of spanwise heterogeneous topo-

graphically-forced circulations changes as the spacing between elements varies. The

authors used circulation, compensated for the presence of counter-rotating cells:

C� ¼ usHð Þ�1

Z
A
jhx1itðx2; x3Þjd2x; ð14Þ

where d2x represents the spanwise–wall-normal plane. The profile of C� versus spanwise

spacing, s2=H, exhibits two distinct regions. For 0� s2=H.1, C� rises abruptly due to the

growing spatial extent of counter-rotating cells (consistent with findings from Vanderwel

and Ganapathisubramani [30]). For s2=HJ1, C� declines, although with a weaker

dependence on s2=H. We [32] have labeled these regions as ‘‘roughness’’ and ‘‘topogra-

phy’’, respectively, and demonstrated that the former does not inhibit outer-layer similarity,

while the larger roll cells globally disrupt the flow such that outer-layer similarity is not

possible. It would be of interest, then, to consider how the magnitude of constituent terms

within Eq. 11 vary, and if this variation can be used to explain the observations of turbulent

secondary flow intensity. Here, owing to the vortex forcing scheme, we use the symbol, k,
as an analog for s2=H, while other characteristics of the problem are used to explain the

observed C� � kn scaling arguments. Since the flow regime is undeniably predicated upon

spacing, we have decomposed the scaling exercises based on the aforementioned rough-

ness and topography regimes.

2.2.1 Roughness

Under the roughness regime, we envision the following scales for terms in Eq. 11:

hu1it �U; hu2it �V; hu3it �W ; x2 � k; x3 � k; us �Us; ð15Þ

where U, V, and W are scales for the streamwise, spanwise, and vertical velocity,

respectively; for simplicity, we will leverage the circular form of secondary rolls by stating

that x2 � x3 � k. Us is the amplitude of the Stokes forcing velocity (Eq. 3), and thus sets the

magnitude of the vortex forcing (Eq. 7). Upon substitution into Eq. 11, we attain:

V
hx1it
k

;W
hx1it
k

; mt
hx1it
k2

; mt
hx1it
k2

;
UUs

k2
;
UUs

k2
: ð16Þ

Dividing each term by U eliminates the advective terms since U=V �U=W[ [ 1 (this

has been confirmed in turbulent ducts, boundary layers, and channels). Further algebra

yields the relation:

hx1it �
UsU

mt
; ð17Þ
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which, upon substitution in Eq. 14 and presuming that d2x� k2, yields:

C� � UsU

u2s
S2; ð18Þ

where S ¼ k=H. For simplicity and given its relatively immaterial importance to the

present development, we have taken the liberty of setting mt � usH in the transition from

Eq. 16 to 17. This assumption is supported by recalling Eq. 9, the Boussinesq model upon

which the Reynolds stresses can be related to the strain-rate tensor. Since the left- and

right-hand side of Eq. 9 go like u2s and mtH�1us, respectively, it follows that mt � usH. The

prefactor, UsU=u2s , plays the important role of representing the relative influence of the

imposed Stokes drag. This factor may be thought of as a proxy for the roughness height,

h / H, although such a connection can not strictly be made since the presence of

momentum-absorbing elements has been parametrized via the vortex forcing, fx, in Eqs. 1

and 4.

2.2.2 Topography

Under the topography regime, we envision the following scales for terms in Eq. 11:

hu1it �U; hu2it �V; hu3it �W ; x2 �HS�1; x3 �H; us �Us; ð19Þ

where x2 �HS�1 accounts for the fact that for very large S, adjacent counter-rotating

secondary cells will be separated by a large region wherein the flow scales as a high

Reynolds number channel flow. Upon substitution of the Eq. 19 scales, Eq. 11 reduces to:

V
hx1it
HS�1

;W
hx1it
H

; mt
hx1it
H2S�2

; mt
hx1it
H2

;
UUs

H2S�1
;
UUs

H2S�1
: ð20Þ

As per the Sect. 2.2.1 development, division by U eliminates the advective terms since

V=U�W=U\\1. Further algebra results in:

hx1it �
UsU

mt
: ð21Þ

Substitution into Eq. 14 and using consistent scaling for the topography regime,

d2x�H2S�1, where the S�1 factor accounts for the diminishing spatial extent occupied by

cells as spacing increases, yields:

C� � UsU

u2s
S�1: ð22Þ

2.3 Summary

In summary, the analysis has indicated the following scaling for compensated circulation:

C� �

UsU

u2s
S2 if S.2; and

UsU

u2s
S�1 if SJ2:

8>><
>>: ð23Þ
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It is interesting to note that C� �UsU=u2s , irrespective of the regime. Recall, however, that

the Stokes drift magnitude is an indicator of the topography attributes—not the spanwise

distance between adjacent rows of such elements—and there is thus no reason to expect the

dependence of Us to vary with S. Figure 1 shows the Eq. 23 scaling arguments for UsU=u2s
values summarized within the caption. We have plotted profiles for different values of

Us=U, which demonstrates the interplay between Stokes forcing and outer momentum.

Moreover, the figure includes discrete datapoints for C� against spanwise spacing, s2=H,

from the recent study by Yang and Anderson [32]. For that study, LES with an immersed-

boundary method was used to model flow over rows of streamwise-aligned, vertically-

truncated pyramid obstacles, where the rows were spaced at different s2=H (see ‘‘Appendix

A’’ for further discussion). Two sets of simulations were considered, where the element

height was varied between the two sets (H=h ¼ 15 and H=h ¼ 20), while s2=H was varied

within each set. The datapoints do not exactly follow a single Eq. 23 profile, although there

is no reason why they should owing to intrinsic differences between the simulations [32]

and the present Stokes forcing approach. Moreover, the Yang and Anderson [32] study

made use of a large number of simulations, and the results in some cases may be affected

by mild non-stationarity in the simulations [56, 57]. Nonetheless, there is reasonable

agreement in the trends between the scaling arguments and datapoints.

3 Similarity solution

Having used the preceding scaling arguments to demonstrate how the intensity of topo-

graphically-driven counter-rotating vortices varies with vortex forcing magnitude and

spacing, we turn now to a prognostic solution for the corresponding streamwise velocity

(i.e., the momentum excess or deficit within a HMP or LMP, respectively). This is derived

10-1 100 101
0

1

2

3

4

Roughness Topography

Fig. 1 Equation 23 profiles for UsU=u2s ¼ 3 (black lines), UsU=u2s ¼ 2 (intermediate gray), and UsU=u2s ¼
1 (light gray), for varying S ¼ kH�1. Profiles increasing and decreasing with S are for the roughness regime
(Eq. 18) and topography regime (Eq. 22), respectively. We have provided annotation of the ‘Roughness’
and ‘Topography’ regime S values, for discussion. Included also are discrete data points from [32], who
performed an LES-based parametric study on the effects of element height and spanwise spacing, s2=H. The
orange circles and red ‘?’ signs correspond with elements with H=h ¼ 15 and H=h ¼ 20, respectively (see
‘‘Appendix A’’ for additional discussion). Here, we have assumed S ¼ s2=H, while the red and orange
symbols denote H=h ¼ 20 and 15, respectively
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from the Reynolds-averaged streamwise vorticity transport equation (Eq. 11). Here, we

present a similarity solution for hu1itðx2; x3Þ based on introduction of a streamfunction for

the counter-rotating circulations, wðx2; x3Þ. We introduce the similarity variable:

g ¼ gðUs; us; k; x2; x3;HÞ ¼ Us

us
Gðx2; x3; k;HÞ; ð24Þ

where the function, G ¼ Gðx2; x3; k;HÞ, exhibits an intrinsic dependence on the pre-de-

fined streamfunction and, therefore, will be defined later in the development. Since

hu2it ¼ o3w, hu3it ¼ �o2w, and hx1it ¼ �r2w ¼ �o22w� o23w, Eq. 11 can be expressed

as:

o2wðo223wþ o333wÞ � o3wðo222wþ o233wÞ ¼ � 1

2
mtðo2222wþ 2o2233wþ o3333wÞ

þ o2hu1itð Þ o3u
s
1

� �
� o3hu1itð Þ o2u

s
1

� �
:

ð25Þ

In Eq. 25, the unknown quantities (w and hu1it) may be expressed with respect to the

Eq. 24 similarity variable as:

w ¼ usHWðgÞ; ð26Þ

and,

hu1it ¼ usUðgÞ; ð27Þ

which yields, upon substitution in Eq. 25:

o2Wðo223Wþ o333WÞ � o3Wðo222Wþ o233WÞ þ 1

2
ðo2222Wþ 2o2233Wþ o3333WÞ

¼ u�1
s H�2 o2Uð Þ o3u

s
1

� �
� o3Uð Þ o2u

s
1

� �
 �
:

ð28Þ

In the transition from Eqs. 25 to 28, the model, mt ¼ usH, has been introduced in order to

advance the development. This assumption, rudimentary though it is, exhibits consistency

with the underlying Boussinesq model and enables the development to proceed; of course,

more complex generlizations could be adopted, but such efforts are secondary to the focus

of this work and not expected to materially alter trends derived from the similarity solution.

‘‘Appendix B’’ presents step-by-step evaluation of terms in Eq. 28, where use has been

made of the univariate and multivariate Faá di Bruno formula [58, 59]. Evaluation of the

partial derivatives in Eq. 28 yields:

dU

dg
¼ A

d4W
dg4

þ B
d3W
dg3

þ C
d2W
dg2

þ D
d2W
dg2

dW
dg

þ E
dW
dg

dW
dg

þ F
dW
dg

; ð29Þ

where the prefactors, A, B, C, D, E, and F, are:

A ¼ 1

2
usH

2
o2g½ 	2þ o3g½ 	2

� 	2
o2go3us1 � o3go2us1

; ð30Þ
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B ¼ usH
2
o22g 3fo2gg2 þ fo3gg2

h i
þ o33g 3fo3gg2 þ fo2gg2

h i
þ 4o2go3go23g

o2go3us1 � o3go2us1
; ð31Þ

C ¼ usH
2 2o2g o222gþ o332g½ 	 þ 2o3g o333gþ o223g½ 	 þ 2 o23g½ 	2þo22go33g

o2go3us1 � o3go2us1
; ð32Þ

D ¼ usH
2
o23g fo2gg2 � fo3gg2

h i
þ o2go3g o33g� o22g½ 	

o2go3us1 � o3go2us1
; ð33Þ

E ¼ usH
2 o2g o223gþ o333g½ 	 � o3g o222gþ o332g½ 	

o2go3us1 � o3go2us1
; ð34Þ

and

F ¼ 1

2
usH

2 o2222gþ 2o2233gþ o3333g
o2go3us1 � o3go2us1

: ð35Þ

‘‘Appendix B’’ covers use of the Faá di Bruno formula to evaluate nth-order univariate and

multivariate partial derivatives, as needed to compute A to F in Eqs. 30 to 35. Note also that

the denominators of prefactors A to F are subjected to a mild low-pass filtering before further

computation. Success of the development is not contingent upon low-pass filtering, rather this

‘‘smoothing’’ helps to attenuate large values that occur locally and would otherwise under-

mine the resultant predictions. Though brief and ostensibly solvable, we emphasize that

Eq. 29 is contingent upon a priori prescription of a model for the streamfunction. This

concern can be remedied, however, via prescription of a model for the mean counter-rotating

cells associated with low- and high-momentum pathways and spanwise aerodynamic drag

variability. Consider, for example, a streamfunction based on a single free vortex:

wðx2; x3; kÞ ¼ a exp �ðx3 � k=2Þ4

a33H4
� ðx2 � k=2Þ4

a32H4

 !
; ð36Þ

where a is a circulation prefactor, and a33 and a32 are tuning parameters, which vary the

spatial distribution of w, and, thus, hx1it. These parameters are independently defined, in

order to ensure that the resultant velocity field conforms with the boundary conditions of a

turbulent wall flow. The Eq. 36 streamfunction represents a single vortex core with center-

of-rotation displaced vertically at elevation, k=2, and at spanwise location x2 ¼ k=2. Any
streamfunction (including the model used here) must exhibit consistency with the no-slip

conditions required for a turbulent wall flow; here, this consistency can be readily assessed

by consideration of the resultant velocity field spanwise–wall-normal velocity field:

hu2it ¼
ow
ox3

¼ �a
4ðx3 � k=2Þ3

a33H4
exp �ðx3 � k=2Þ4

a33H4
� ðx2 � k=2Þ4

a32H4

 !
; ð37Þ

and

hu3it ¼ � ow
ox2

¼ a
4ðx2 � k=2Þ3

a32H4
exp �ðx3 � k=2Þ4

a33H4
� ðx2 � k=2Þ4

a32H4

 !
; ð38Þ

where the parameters, a22 and a33, force the velocities to zero (or approaching zero) at the

wall and flow height. In Sect. 5, results will be shown that support this claim. The additive
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nature of streamfunctions enables more complex flows to be assembled via generalization

to Eq. 36, vis:

wðx2; x3; kÞ ¼ a
XN=2
i¼1

exp �
ðx3 � k

2
Þ4

a33H4
�
ðx2 � f2i� 1g k

2
Þ4

a32H2

" #

� a
XN=2
i¼1

exp �
ðx3 � k

2
Þ4

a33H4
�
ðx2 � 2i k

2
Þ4

a32H4

" #
;

ð39Þ

where N is the number of counter-rotating vortex cores, and the summation has been

decomposed into summation over odd and even indices with the first and second right-hand

side terms, respectively, which enables the polarity of prefactor a to vary and model

counter-rotating vortex cores. Thus, if a is known, the streamfunction for a range of flow

regimes can be defined a priori. And since the preceding scaling analysis (Sect. 2.3) has

confirmed the scaling relations for shear-normalized circulation, while Yang and Anderson

[32] have revealed the amplitudes of C�, wðx2; x3; kÞ can be defined. With this, we recall

the initial definition of the streamfunction in Eq. 26. It follows that if w is known, then

WðgÞ ¼ Husð Þ�1w can be evaluated using the pre-defined array of counter-rotating vor-

tices. This leaves only Gðx2; x3; k;HÞ to be defined, thereby defining g and closing the

system. The definition of g is constrained by the governing partial differential equation

such that the any dependence upon problem parameters is consolidated within g. Here, we
define G in a manner that captures the dependence on x2, x3, H, k, while also simplifying

computation of ordinary derivatives of W. This attribute is, in fact, not necessary, but it is

nonetheless helpful in the following developments. The selected model for G:

Gðx2; x3; k;HÞ ¼ ðx3 � k=4Þ2

a33H4
þ ðx2 � k=2Þ4

a32H4

 !
: ð40Þ

Though cumbersome, the partial derivatives of G can be computed with finite differences,

allowing determination of prefactors A to F in Eqs. 30 to 35, respectively, thereby enabling

determination of hu1it via integration of Eq. 29 and substitution of Eq. 27.

When Eq. 40 is used for Gðx2; x3; k;HÞ, we can further advance Eq. 25 with

WðgÞ ¼ a� exp �us=U
sgð Þ, where a� ¼ a Husð Þ�1

, W0ðgÞ ¼ �us=U
sWðgÞ,

W00ðgÞ ¼ ðus=UsÞ2WðgÞ, W000ðgÞ ¼ �ðus=UsÞ3WðgÞ, and W0000ðgÞ ¼ ðus=UsÞ4WðgÞ, result-
ing in:

dU

dg
¼
�
A

�
us

Us

�3
� B

�
us

Us

�2
þ C

�
us

Us

�
� D

�
us

Us

�2
Wþ E

�
us

Us

�
W� F

��
us

Us

�
W: ð41Þ

C� can be retrieved from a posteriori values derived from the preceding scaling analysis or

from precise models derived from simulations or experiments. Integration of the Eq. 41

ordinary differential equation (ODE) yields:

UðgÞ ¼
Z max gð Þ

min gð Þ

�
A

�
us

Us

�3
� B

�
us

Us

�2
þ C

�
us

Us

�
� D

�
us

Us

�2
W

þ E

�
us

Us

�
W� F

��
us

Us

�
Wdg;

ð42Þ
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which can be evaluated with a standard numerical quadrature (we have used Reimann

summation, which captures the dominant variability of Eq. 42 terms and is, thus, sufficient

for the present purposes):

UðgÞ ¼
�
A

�
us

Us

�3
� B

�
us

Us

�2
þ C

�
us

Us

�
� D

�
us

Us

�2
W

þ E

�
us

Us

�
W� F

��
us

Us

�
Wdg:

ð43Þ

Given the functional dependence of g (recall Eq. 24), it is important to note that:

dg ¼ og
ox2

dx2 þ
og
ox3

dx3 þ
og
ok

dkþ og
ous

dus þ
og
oUs

dUs þ og
oH

dH: ð44Þ

For presentation of results, we show Uðgðx2; x3; k; us;Us;HÞÞ, and thus

dg ¼ og=ox2ð Þdx2 þ og=ox3ð Þdx3. The resulting contours for Uðgðx2; x3; k; us;Us;HÞÞ
show the spatial variability of mean streamwise velocity for fixed values of vortex core

spacing, Stokes forcing amplitude, and shear velocity. To these contours, we add a loga-

rithmic profile, which constitutes the base state the flow would attain in the absence of

spanwise topographic heterogeneity:

u
f
1ðx2; x3Þ
us

¼ 1

j
log

x3

z0

� �
þ Uðgðx2; x3; k; us;Us;HÞÞ; ð45Þ

where j ¼ 0:4 is the von Kármán constant and z0=H ¼ 10�4 is an aerodynamic roughness

length. It is emphasized that the Eq. 36 streamfunction is just one of many candidate

models that could have been used to represent the vortex cores. We experimented with a

series of models (including an ideal vortex), and this particular model provided the most

realistic input vortex cores. We emphasize, finally, that an additional test of efficacy would

involve substitution of the resultant streamwise velocity (Eq. 45) and selected stream-

function (Eq. 36) back in to the original transport equation (Eq. 25), and ensuring a bal-

ance is attained. We attempted this very exercise, and attained moderate agreement

between the left- and right-hand side of Eq. 25. This difficulty in balancing Eq. 25 has been

well reported in other articles [31, 43].

4 Cases

In order to assess the efficacy of the Sect. 3 development and Eq. 45, we have selected a

representative range of forcing conditions. Table 1 summarizes nine cases, presenting the

tuning parameters used to model the Stokes vortex forcing (Eqs. 3 and 36). In the interest

of brevity, we have not varied spacing since the present article is directed to assessment of

the resultant streamwise velocity distribution (previous contributions have comprehen-

sively addressed spacing). Instead, we have varied streamfunction amplitude, a�, and
Stokes forcing amplitude, Us=us. It is clear that Eq. 45 will tend towards a logarithmic

form as these quantities approach zero (which would be analogous to reducing the height

of adjacent rows of elements). Finally, the results shown in Sect. 5 are from a domain of

spanwise and vertical extent, f x2; x3ð Þ : 0� x2=H� 1; 0� x3=H� 1g, for a single vortex

core of amplitude, a�. With this, we evaluate the resultant flow field, huit, and then perform
a ‘‘mirroring’’ of quantities about the vertical axis at x2=H ¼ 1, which recreates the
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presence of two counter-rotating vortices adjacent to an LMP at location x2=H ¼ 1. With

this, the domain also includes two HMPs at locations x2=H ¼ 0 and x2=H ¼ 2.

5 Results

For the cases summarized in Table 1, we show key first-order quantities to demonstrate

efficacy of the Sect. 3 solution. Figures 2 and 3 show results for cases 1 and 8, respec-

tively, where color flood contours of Reynolds-averaged streamwise vorticity, hx1itH=us,
streamwise velocity, hu1it=us, spanwise velocity, hu2it=us, and wall-normal velocity,

hu3it=us, is shown in Panels (a), (b), (c), and (d), respectively. The results for these cases

are shown in order to consider ‘‘limiting states’’ within the parameter space, although the

distributions are representative of intermediate states (discussion to following in text

accompanying Fig. 4). The contours of hx1it=us are used to demonstrate the presence of

counter-rotating, secondary flows within the domain—the signature of roughness-driven

turbulent secondary flows (the vector field has been added to further emphasize this point.

The color flood of hu1it=us (Panel b) further demonstrates that the similarity solution with

vortex forcing yields highly realistic mean streamwise velocity distributions. For both

cases, one can see a clear LMP and HMP at the locations of upwelling and downwelling,

respectively. In previous articles, we have remarked that flows altered by spanwise surface

heterogeneity exhibit momentum excess and deficit above the high and low roughness: a

counter-intuitive outcome that can only be understood when viewed through the lens of

Prandtl’s secondary flow of the second kind [31]. The analog is true here when one

consults the Eq. 3 forcing condition.

Equation 3 exhibits a maximum and minimum value at x2=H ¼ 0 (Us) and x2=H ¼ k=H
(�Us), respectively. Equation 2 presents the vortex model, where the input arguments and

curl operation dictate that fx ¼ f0î;�x3u
s
1 ĵ;þx2u

s
1k̂g. Consider, then, the vertical com-

ponents: fx3 ¼ x2u
s
1 ¼ o3u1u

s
1, where the vertical gradient within the equation for

streamwise vorticity has been omitted owing to streamwise homogeneity of these flows

[27, 31]. Since o3u1 is positive at all spanwise locations, fx3 ¼ o3u1u
s
1 requires that the

polarity of us1 must be positive and negative at the base of a HMP and LMP, respectively,

in order to induce the downwelling and upwelling that is characteristic of these flows.

Similarly, since f2 ¼ o2u1u
s
1, and because o2u1\0 between a HMP and LMP, us1 must be

positive at the base of a HMP in order to induce the positive spanwise forcing associated

Table 1 Details of surfaces and
forcing conditions considered in
present study

Case k
H

Us

us

a1 a2 a32 a33 a�

1 1.0 0.05 0.002 0.10 0.04 0.067 0.012

2 1.0 0.05 0.002 0.10 0.04 0.067 0.020

3 1.0 0.05 0.002 0.10 0.04 0.067 0.028

4 1.0 0.10 0.002 0.10 0.04 0.067 0.012

5 1.0 0.10 0.002 0.10 0.04 0.067 0.020

6 1.0 0.10 0.002 0.10 0.04 0.067 0.028

7 1.0 0.20 0.002 0.10 0.04 0.067 0.012

8 1.0 0.20 0.002 0.10 0.04 0.067 0.020

9 1.0 0.20 0.002 0.10 0.04 0.067 0.028
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Fig. 2 Contours of Reynolds-averaged quantities from Sect. 3, for case 1: a hx1itH=us, b u
f
1=us from

Eq. 45, c hu2it=us and d hu3it=us. On Panels (a) and (b), black vectors denote fhu2it; hu3itg. On Panel (b),
vertical lines denote the locations at which Fig. 4 are retrieved
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Fig. 3 Contours of Reynolds-averaged quantities from Sect. 3, for case 8: a hx1itH=us, b u
f
1=us from

Eq. 45, c hu2it=us and d hu3it=us. On Panels (a) and (b), black vectors denote fhu2it; hu3itg. On Panel (b),
vertical lines denote the locations at which Fig. 4 are retrieved
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with lateral ejection of fluid at the HMP base. In summary, the Stokes model set forth here

is useful but must be configured with caution, since the resultant forcing directions must be

physically compliant with the choice of input streamfunction (see also Sect. 6).

The magnitude of streamwise velocity and streamwise vorticity presented in Figs. 2 and

3 is consistent with values reported from LES and experimental measurement [29, 31]. We

emphasize again that the entire development is contingent upon a user-defined stream-

function and a rudimentary model for the turbulent viscosity, mt. Refinements to both would

potentially enhance the fidelity of the present results, although the development itself

would remain identical. To this extent, we have included color flood contours for hu2it=us
and hu3it=us on Figs. 2 and 3. As outlined in Sect. 3, Eqs. 37 and 38, these velocity

components are a direct product of the a priori defined streamfunction, and we went to

great lengths to ensure that the resultant velocities were consistent with a roughness-

perturbed turbulent secondary flow in a channel. The figures indicate that this has been

accomplished: first, Panel (c) shows a predominant ‘‘inflow’’ and ‘‘outflow’’ at the bottom

and top of the LMP (x2=H ¼ 1), respectively, but these zones of elevated velocity are

tending toward zero at x3=H ¼ 0. Similarly, Panel (d) shows that hu3it=us is zero at

virtually all wall and centerline locations, with pronounced zones of upwelling and
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Fig. 4 Vertical profiles of velocity components for the cases summarized in Table 1. Panels a–c show

u
f
1ðx3Þ=us at spanwise locations, x2=H ¼ 0:075 (solid lines) and x2=H ¼ 0:942 (dashed lines); Panels d–f

show the ratio, hu3ðx3Þit=u
f
1ðx3Þ at spanwise locations, x2=H ¼ 0:075 (negative values) and x2=H ¼ 0:942

(positive values). The spanwise locations are superimposed on Figs. 2 and 3, for perspective. Panels show:
cases 1 to 3 (a, d), cases 4 to 6 (b,e), and cases 7 to 9 (c, f), where the first, second, and third case within
each group is represented by black, intermediate gray, and light gray lines, respectively. On Panels (a) to (c),
the red line represents the logarithmic streamwise velocity profile. On Panels (d) to (e), the red line
represents hu3it ¼ 0, as would exist in a canonical channel. The HMP and LMP annotation has been added

to highlight the downwelling and upwelling of fluid, respectively, owing to the counter-rotating cells
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downwelling within the LMP and HMP, respectively, which is precisely to be expected and

indicative of a physically-meaningful streamfunction.

Figure 4 shows vertical profiles of streamwise and vertical velocity for all the Table 1

cases. Panels (a) to (c) show profiles within a HMP (solid profiles) and LMP (dashed

profiles). The profiles are shown relative to the logarithmic base model, as per Eq. 45.

Within the HMP and LMP, we observe excesses and deficits in streamwise velocity, as

expected. The magnitude of diversion from the base model increases monotonically with

increasing Us=us (Panels a to c), and for increasing streamfunction amplitude. We

emphasize the use of logarithmic-linear scaling, which serves to provide greater detail to

the lowest 50% of the domain. We note also that the vertical gradient of u
f
1=us is markedly

larger within the HMP in the region, 0:3.x3=H.0:7, which is entirely consistent with the

notion of enhanced momentum fluxes (and drag) within HMPs, as has been shown in detail

by Willingham et al. [27] and Anderson et al. [31].

Figure 4(d) to (f) show the ratio, hu3it=u
f
1, within a HMP and LMP. It is clear that the

development has captured the downwelling and upwelling that is a key attribute of these

flows. Moreover, it is notable that the ratio is 
 1� 4%, which compares closely with

values reported in the duct flow literature [37, 39–42] and in our recent parametric study

[32]. We note, again, that the profiles vary monotonically, and that enhanced forcing

results in more vigorous downwelling and upwelling. In the following section, results are

shown from a series of LES cases wherein the Eq. 3 vortex forcing parameters are varied to

capture roughness and topography cases [32]. Section 6 culminates in showing that the

ratio, hu3it=u
f
1, exhibits trends and magnitudes closely resembling those derived from the

present similarity solution.

6 Large-eddy simulation with vortex forcing model

In order to demonstrate efficacy of Eq. 3, and thus the subsequent developments in Sects. 2

and 3, we have performed a series of large-eddy simulation (LES) cases. We consider flow

over surfaces with a homogeneous roughness distribution, with attributes summarized in

Table 2. During LES, the spatially-filtered, three-dimensional incompressible momentum

transport equations are solved at high-Reynolds number [60, 61] for a neutrally-stratified

(i.e. no buoyancy forces) turbulent channel flow:

Table 2 Details of LES cases and vortex forcing model parameters for Sect. 6

Case 2k
H

Us

us

a1 a2 L1=H L2=H N1 � N2 � N3

L1 0.2 0.02 0.002 0.100 3.2 3.2 128 9 128 9 128

L2 0.8 0.02 0.002 0.100 3.2 3.2 128 9 128 9 128

L3 1.6 0.20 0.002 0.100 3.2 3.2 128 9 128 9 128

L4 3.2 0.20 0.002 0.100 3.2 3.2 128 9 128 9 128

L5 2.0 0.20 0.002 0.100 2.0 2.0 128 9 128 9 128

L6 2.0 0.67 0.002 0.100 2.0 2.0 128 9 128 9 128

1368 Environ Fluid Mech (2018) 18:1351–1378

123



o~u

ot
þ 1

2
r ~u � ~uð Þ � ~u� ~x ¼ � 1

q
r~p�r � sþPþ 1

q
fx; ð46Þ

where ~p is the modified pressure, s ¼ gu� u � ~u� ~u is the subgrid-scale (SGS) stress

tensor, and P ¼ fu2s=H; 0; 0g is an imposed mean pressure gradient in the streamwise

direction, where us is the shear velocity and H is a predefined channel half height. Note that

Eqs. 1 and 46 are the Reynolds- and spatially-averaged version of the momentum transport

equation, where a spatially-filtered quantity is denoted by e:::, and is the product of con-

volution with a filtering kernel with grid-filter scale resolution, i.e., ~uðx; tÞ ¼ GDHuðx; tÞ.
A solenoidal velocity field is maintained by computing the divergence of Eq. 46, applying

the incompressibility condition, r � ~u ¼ 0, and solving the resulting pressure Poisson

equation for a pressure correction. Note also that the viscous stresses, mr2 ~u, are omitted

from Eq. 46, owing to the high-Reynolds number ‘‘fully rough’’ conditions typical of

ambient conditions in engineering and geophysical flows (the ‘macroscale’ Reynolds

number is Res ¼ usH=m�Oð107Þ) [62]. The deviatoric component of s is evaluated using

the eddy-viscosity modeling approach,

s� 1

3
dTrðsÞ ¼ �2mt ~S ð47Þ

where mt ¼ ðCsDÞ2j~Sj is the turbulent viscosity, Cs is the Smagorinsky coefficient, D is the

filter size, ~S ¼ 1
2
ðr~uþr~uTrÞ is the resolved strain-rate tensor, and j~Sj ¼ ð2 ~S: ~SÞ1=2 is

magnitude of the resolved strain-rate tensor. For this work, Cs is evaluated dynamically

during LES with the Lagrangian scale-dependent dynamic SGS model [63]. Pseudospectral

discretization is used in the horizontal directions, while vertical gradients are evaluated

with centered second-order finite differencing. Periodic boundary conditions are imposed

on the vertical planes of the domain, owing to spectral discretization in the horizontal

directions. At the domain top, the zero-stress Neumann boundary condition is imposed on

streamwise and spanwise velocity, o~u1=ox3jx3=H¼0 ¼ o~u2=ox3jx3=H¼0 ¼ 0. The zero vertical

velocity condition is imposed at the domain top and bottom,

~u3ðx1; x2; x3=H ¼ 0Þ ¼ ~u3ðx1; x2; x3=H ¼ 1Þ ¼ 0. Zero-stress Neumann boundary condi-

tions are imposed on the pressure Poisson equation solution at the domain top and bottom,

o~p=ox3jx3=H¼0 ¼ o~p=ox3jx3=H¼1 ¼ 0. The Adams-Bashforth time-advancement scheme is

used for temporal integration of Eq. 1. The nonlinear advection term is de-aliased in

Fourier space with the 3/2 rule [64]; this is necessary since aliasing errors may contaminate

the smallest resolved scales of the flow, compromising predictions of the SGS models.

Table 2 summarizes the simulation attributes, where L1=H and L2=H is the domain

streamwise and spanwise extent, respectively. The computational domain is staggered in

the vertical direction; the first computational level for ~u1 and ~u2 is located at elevation
1
2
dx3.
For studying wall turbulence responding to spanwise surface heterogeneity, the vortex

forcing model is compelling since one need only define the Eq. 3 function during LES,

where the parameters are selected to capture different values of spacing. Moreover, the

amplitude, Us=us, is a proxy for roughness element height, h / H. In order to implement the

vortex forcing, us ¼ fus1; us2; us3g ¼ fus1; 0; 0g is defined a priori, and then fx ¼ ~x� us ¼
f0;�us1 ~x3; u

s
1 ~x2g is computed during simulation (i.e., instantaneous version of Eq. 2).

Figure 5a, b show profiles of the streamwise component of Eq. 3 for cases L1–L4 and L5

and L6, respectively; see also Table 2 for a summary of vortex forcing model parameters.
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These cases were selected based on the findings from Yang and Anderson [32], wherein the

surface behaves as a roughness or topography for 2k\H or 2k[ 2H, respectively. Users

then define a surface stress at the lower boundary, where the equilibrium logarithmic law is

conventionally used for these turbulent channel flows [60, 65, 66]:

swi3ðx1; x2; dx3=2Þ
q

¼ � jUðx1; x2; dx3=2Þ
log 1

2
dx3=z0

� �
" #2 b~uiðx1; x2; dx3=2Þ

Uðx1; x2; dx3=2Þ
; ð48Þ

where i ¼ 1 and 2, j is the von Kármán constant (j ¼ 0:4), cf. . . denotes test filtering, and
Uðx1; x2; dx3=2Þ ¼ b~u21ðx1; x2; dx3=2Þ þ b~u22ðx1; x2; dx3=2Þh i1=2

is magnitude of the local test-

filtered velocity. We follow Bou-Zeid et al. [63] by using the test-filtered velocities for

computing the wallstress (Eq. 48). In the present study, we used z0=H ¼ 10�5.

6.1 Results

Here, we provide instantaneous and Reynolds-averaged results that demonstrate how

turbulent channel flow over a homogeneous roughness (Eq. 48) responds to the addition of

a vortex forcing term (Eq. 46, Fig. 5, and accompanying text in Sect. 6). The results are

shown for the cases summarized in Table 2. Figure 6 shows instantaneous flow visual-

ization in the spanwise–wall-normal plane, where signed swirl strength, kci ~x1=j ~xj [67], is
used to highlight regions of rotation. For cases L1 and L2, for which the surface is rendered

a roughness by virtue of the small spanwise spacing (Table 2), the flow field does not

exhibit a distinct connection to the vortex forcing. This result is entirely consistent with

observations of Yang and Anderson [32], who showed that when the spanwise spacing

between rows of adjacent roughness elements is ‘‘small’’—for example, 10–30% of the

flow depth—topographic disturbances are confined to the roughness sublayer.

(a) 

(b) 

Fig. 5 Profiles of the streamwise
component of Eq. 3 at elevation,
x3=H ¼ 0, where
us ¼ fus1; us2; us3g ¼ fus1; 0; 0g.
Panels a and b shows cases L1–
L4 and L5 and L6, respectively.
On Panel (a), profiles correspond
with L1 (solid black), L2 (solid
gray), L3 (dashed black), and L4
(dashed gray). On Panel (b),
profiles correspond with L5
(solid black) and L6 (solid gray)
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For case L3 and L4, however, even the instantaneous data shows the signature of the

vortex forcing model, with zones of positive and negative kci ~x1=j ~xj in regions that flank

cites of prominent downwelling and upwelling (evident from inspection of the vector

field). From Fig. 5 and the preceding theoretical developments in Sects. 2 and 3, it was

established that downwelling and upwelling occurs above maxima and minima in us1,

respectively. With this, the instantaneous case L3 result (Fig. 6c) shows upwelling at

x2=H 
 0, 
 1:6, and 
 3:2, and downwelling at x2=H 
 0:8 and 
 2:4 (consistent with

forcing, as shown by Fig. 5). Similar consistency is evident for cases S4, S5, and S6, in

Fig. 6d, e, f, respectively, thereby confirming efficacy of the vortex forcing approach for

the present simulations.

Figure 7 shows Reynolds-averaged flow quantities in the spanwise–wall-normal plane

for the cases summarized in Table 2. The figure format is identical to Fig. 6, except that we

now show Reynolds-averaged quantities. It is clear, firstly, that for cases L1 and L2

(Fig. 7a,b) the high-magnitude flow disturbances are concentrated in the roughness sub-

layer, and this attenuates rapidly in the wall-normal direction. Again, this result is thor-

oughly consistent with our preceding efforts, in which the flow was physically perturbed

with obstacles that were resolved with an immersed boundary method [32] (note that for

Figs. 6 and 7, equivalent colourbar limits were used when generating the colour flood

contours, which helps to objectively compare between cases).

Fig. 6 Spanwise–wall-normal contours of instantantaneous swirl strength signed by instantaneous
streamwise vorticity, kci ~x1=j ~xj [67], with vectors of instantaneous spanwise and vertical velocity,
f~u2; ~u3g, superimposed. Panels correspond with cases L1 (a), L2 (b), L3 (c), L4 (d), L5 (e), and L6 (f).
Location of HMP and LMP denoted by vertical solid black and solid gray lines, respectively (these profiles
are excluded for Panels a and b, since the spacing is so small that a HMP or LMP is unable to form). See
Fig. 5 for graphical illustration of vortex forcing model input profiles
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For cases L3 and L4, larger spacing allows the rollers to grow in spatial extent, while

the magnitude of hkciith ~x1it=jh ~xitj is roughly equal between the cases since the prefactor,

Us=us, is equivalent. For the cases in which a smaller domain is used, the spatial patterns

are entirely consistent with central upwelling at the domain center. However, the magni-

tude of hkciith ~x1it=jh ~xitj for case L6 is roughly three times that for case L5. Note,

however, that the vortex forcing model prefactor, Us=us, differs by roughly the same

amount (see Table 2). It is important to stress that consideration of cases L5 and L6, for

which the computational domain spatial extent is smaller than for cases L1 to L4,

demonstrates that grid resolution is not a control on application of the vortex forcing

model. The results presented here are compelling for two reasons: (1) they confirm efficacy

of the preceding scaling analysis and similarity solution (Sects. 2 and 3, respectively); and

(2) they confirm that a vortex forcing model can be used to impart realistic properties of

wall turbulence when perturbed by spanwise heterogeneity.

On Figs. 6 and 7, Panels (c) to (f), we included vertical lines denoting LMPs (gray) and

HMPs (black), respectively, conceptually identical to the annotations on Figs. 2b and 3b.

The lines graphically represent the data used to generate vertical profiles of the ratio,

h~u3it=h~u1it, in order to provide an additional test of model efficacy and to compare with the

similarity solution result in Sect. 3, Fig. 4d to f. For cases L3 to L6, vertical profiles of the

ratio are shown in Fig. 8, where the annotations denote whether the profiles were derived

from within an LMP or HMP (profiles for cases L1 and L2 are excluded since the ratio was

(a) (b)

(c) (d)

(e) (f)

Fig. 7 Spanwise–wall-normal contours of Reynolds-averaged swirl strength signed by Reynolds-averaged
streamwise vorticity, hkciith ~x1it=jh ~xitj [67], with vectors of Reynolds-averaged spanwise and vertical

velocity, fh~u2it; h~u3itg, superimposed. Panels correspond with cases L1 (a), L2 (b), L3 (c), L4 (d), L5 (e),
and L6 (f). Location of HMP and LMP denoted by vertical solid black and solid gray lines, respectively
(these profiles are excluded for Panels a and b, since the spacing is so small that a HMP or LMP is unable to
form). See Fig. 5 for graphical illustration of vortex forcing model input profiles
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negligible for these cases, indicating that the relatively small s2=H for these cases renders

these surfaces a roughness). The ratio shown in Fig. 8 is equivalent to the ratio shown

already in Fig. 4, although on this occasion the data is retrieved a posteriori from LES at

the locations denoted in Fig. 7c to f. The caption accompanying Fig. 8 defines the profiles.

The profiles for cases L3 and L4 (Fig. 5a) are virtually indistinguishable, which is to be

expected since the vortex forcing amplitude was equivalent (Table 2) and the spacing is

sufficiently large to allow domain-scale turbulent secondary flows (Fig. 7c,d). Moreover,

note that for these cases, the magnitude of the ratio compares favorably against the profiles

in Fig. 4. Since Us=us ¼ 0:2 for cases L3, L4, and L5, the resultant h~u3ðx3Þit=h~u1ðx3Þit
profiles should be roughly equivalent for these cases (even with different domain sizes):

Fig. 8b confirms that this is roughly true (some deviations are to be expected and can be

attributed to difficulties in attain truly Reynolds-averaged data from a single profile).

However, for case L6, h~u3ðx3Þit=h~u1ðx3Þit is substantially larger, owing to the much larger

amplitude.

7 Conclusion

A series of theoretical developments have been used to deduce the scaling arguments for

circulation intensity, with the results comparing favorably against results from a recent

parametric study [32]. With this, the authors recast the Reynolds-averaged streamwise

vorticity transport equation—subjected to a vortex forcing based upon the well-known

Stokes profile—in a similarity form by virtue of an introduced similarity variable. The

subsequent development yields a prognostic model for streamwise velocity that exhibits

spatial trends and magnitudes in agreement with published data from experiments and

simulations. The development is contingent upon a priori prescription of a turbulent

vorticity and streamfunction, where, for expedience, the former was set to the product of

shear velocity and flow depth, while the latter was prescribed based on antecedent results

from simulations and experiments. We were entirely transparent about this attribute of the

similarity solution, and presented candidate values that enabled solution. Of course, further

generalizations are possible, although these are not expected to materially change the

nature of the similarity solution.

(a) (b) 

Fig. 8 Vertical profiles of the ratio, h~u3ðx3Þit=h~u1ðx3Þit, at the locations of HMPs and LMPs denoted in

Figs. 6 and 7. Panels a and b show cases L1 to L4 and L5 to L6, respectively, while the figures are annotated
to define whether the profiles are from within a HMP or LMP. Panel (a) shows profiles for case L3 (solid
black) and L4 (solid gray). Panel (b) shows profiles for case L5 (solid black) and L6 (solid gray)
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The scaling analysis and similarity solution were contingent upon application of a

vortex forcing model. In order to demonstrate efficacy of this model, a suite of LES cases

were considered wherein the grid-filtered momentum transport equation was forced with

the vortex forcing model, with input parameters varied to replicate conditions of the

similarity solution. For small spacing cases, spanwise ‘‘topographic’’ heterogeneity effects

are confined to the roughness sublayer, while Reynolds-averaged domain-scale counter-

rotating rolls emerge as the spacing is increased to larger values. The results do not display

any sensitivity to grid resolution, and are entirely consistent with comparable simulations

when the secondary flows are forced by actual topographic elements. Thus, the article

presents a forcing scheme that may find utility in flows responding to some spanwise

heterogeneity, and a prognostic tool for such flows. We consider open-channel flows in

river hydraulics to be one such example [24, 26, 36], where the presence of spanwise-

varying surface roughness—for example, adjacent patches of fine gravel and low-height

vegetation—is common.
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Appendix A: Datapoints from Yang and Anderson (2017)

Figure 1 showed datapoints of compensated circulation from Yang and Anderson [32]. For

that study, LES with an IBM was used to model flow over a series of topographies

composed of streamwise-aligned, vertically-truncated pyramid obstacles. For the simula-

tions, we used the LES code already described in Sect. 6 (while the IBM has been outlined

in many previous articles [68]). Figure 9a shows a sample arrangement, while Fig. 9b is a

close-up sketch of the elements. Two sets of simulations were considered: (a) Set 1

featured elements with H=h ¼ 15; (b) Set 2 featured elements with H=h ¼ 20.

For Set 1, we considered s2=H ¼ f0:1; 0:2; 0:32; 0:46; 0:53; 0:64; 0:8; 1:0; 1
2
p; 2pg,

while for Set 2 we considered s2=H ¼ f0:32; 0:46; 0:64; 1:0; p; 2pg. Figure 9b shows

detailed attributes of the elements; for all cases, wb=H ¼ 0:0756, lb=H ¼ 0:0756,
wt=H ¼ 0:025, lt=H ¼ 0:025, and sx=H ¼ 0:0756. For Set 1 and Set 2, h ¼ 69:30 and

Fig. 9 Illustration of spanwise heterogeneous topography composed of streamwise-aligned rows of
pyramidal obstacles: a perspective image showing spacing between adjacent rows, s2=H, and obstacle
height, h / H and b close up of obstacles showing streamwise spacing, s1, inclination, h, width and length at
base, wb and wt , respectively, and width and length and top, wt and lt, respectively. Pressure-gradient forcing
aligned with x1 direction, as shown with U0. In figure, all lengths normalized by channel half height, H
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58.52, respectively, though we stress that h is not expected to have a material affect on

conclusions of this study, given the fully rough flow conditions [2, 69].

Appendix B: Faá di Bruno Formula

The univariate Faá di Bruno formula:

ongðf ðxÞÞ
ox

¼
X n!

b1!b1!. . .bn!
g kð Þ f ðxÞð Þ

Yn
j¼1

f kð ÞðxÞ
j!

� �bj

; ð49Þ

where the summation is over all possible solutions with non-negative integer input argu-

ments to the relations, b1 þ 2b2 þ . . .þ nbn ¼ n and k ¼
Xn

i¼1
bi. With this, the first-

order derivatives in x2 and x3 are:

o2W ¼ W0o2g; ð50Þ

and

o3W ¼ W0o3g; ð51Þ

where the summation is made over a single partition: (1) b1 ¼ 1, and k ¼ 1. The second-

order derivatives in x2 and x3 are:

o22W ¼ W00 o2g½ 	2þW0o22g; ð52Þ

and

o33W ¼ W00 o3g½ 	2þW0o33g; ð53Þ

where the summation is made over two partitions: (1) b1 ¼ 2, b2 ¼ 0, and k ¼ 2; and (2)

b1 ¼ 0, b2 ¼ 1, and k ¼ 1. The third-order derivatives in x2 and x3 are:

o222W ¼ W000 o2g½ 	3þ3W00o2go22gþW0o222g; ð54Þ

and

o333W ¼ W000 o3g½ 	3þ3W00o3go33gþW0o333g; ð55Þ

where the summation is made over three partitions: (1) b1 ¼ 3, b2 ¼ 0, b3 ¼ 0, and k ¼ 3;

(2) b1 ¼ 0, b2 ¼ 0, b3 ¼ 1, and k ¼ 1; and (3) b1 ¼ 1, b2 ¼ 1, b3 ¼ 0, and k ¼ 2. The

fourth-order derivatives in x2 and x3 are:

o2222W ¼ W0000 o2g½ 	4þ6W000 o2g½ 	2o22gþ 4W00o2go222gþW0o2222g; ð56Þ

and

o3333W ¼ W0000 o3g½ 	4þ6W000 o3g½ 	2o33gþ 4W00o3go333gþW0o3333g; ð57Þ

where the summation is made over four partitions: (1) b1 ¼ 4, b2 ¼ 0, b3 ¼ 0, b4 ¼ 0, and

k ¼ 4; (2) b1 ¼ 0, b2 ¼ 0, b3 ¼ 0, b4 ¼ 1, and k ¼ 1; (3) b1 ¼ 1, b2 ¼ 0, b3 ¼ 1, b4 ¼ 0,

and k ¼ 2; and (4) b1 ¼ 2, b2 ¼ 1, b3 ¼ 0, b4 ¼ 0, and k ¼ 3. Finally, a multivariate

version of Eq. 49 is needed for terms in Eq. 25. The multivariate form of Eq. 49 yields,
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o223W ¼ W000 o2g½ 	2o3gþW00 o3 o2gð Þ2þo22go3g
h i

þW0o223g; ð58Þ

o332W ¼ W000 o3g½ 	2o2gþW00 o2 o3gð Þ2þo33go2g
h i

þW0o332g; ð59Þ

and

o3322W ¼ W0000 o2g½ 	2 o3g½ 	2þW000 2o2go2 o3g½ 	2þo22g o3g½ 	2þo33g o2g½ 	2
� 	

þW00 2 fo23gg2 þ o3go223gþ o2go332g
h i

þ o22go33g
� 	

þ o2233gW
0;

ð60Þ

where it has been presumed throughout that the partial differential operators commute.

Note that the efficacy of Eqs. 58 and 59 can be quickly established by setting index 3 to 2

or setting index 2 to 3 in the former and latter, respectively, and comparing against Eqs. 54

and 55. In addition, the denominators of prefactors A to F (Eqs. 30 to 35) make use of the

spatial derivatives of the Eq. 3 Stokes drift function, which are defined here for

completeness:

o3u
s
1 ¼ �Us 2x3

a2H2
exp � x22

a1H2

� �
� exp �fx2 � kg2

a1H2

" # !
exp � x23

a2H2

� �
; ð61Þ

and,

o2u
s
1 ¼ Us 2

a1H2
fx2 � kg exp �fx2 � kg2

a1H2

" #
� x2 exp � x22

a1H2

� � !
exp � x23

a2H2

� �
: ð62Þ
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